Summary: unveiled SMART-BARN, a state-of-the-art facility to study the group behavior of animals.
Housed in an 18th-century barn and a gymnasium-sized Imaging Hangar, the tool uses high-throughput techniques like optical and acoustic tracking to monitor animals in 3D. This allows researchers to study behaviors and interactions previously impossible to capture in lab settings.
SMART-BARN is seen as a game-changer in the field, with applications ranging from biology to artificial intelligence.
Key Facts:
- SMART-BARN stands for Scalable Multimodal Arena for Real-time Tracking Behaviour of Animals in large numbers.
- The technology can simultaneously monitor hundreds, or even thousands, of animals depending on their size.
- The system is multidisciplinary, developed by biologists, physicists, engineers, and computer scientists, and has already been applied to study various species including pigeons, starlings, moths, bats, and humans.
Source: University of Konstanz
Researchers from the Cluster of Excellence Centre for the Advanced Study of Collective Behaviour (CASCB) and the Max Planck Institute of Animal Behavior have converted a former barn into a cutting-edge technology lab for complex behavioral analysis. In it, they can now study the intricate behaviour of animal groups.
The barn also served as a prototype for the largest swarm behaviour lab at the University of Konstanz: the Imaging Hangar.
A major limitation in behavioural research is that scientists can either study animals under highly-controlled, yet often unrealistically simplified and small, environments in the lab, or in largely uncontrolled conditions in the wild.
This has limited our ability to study many facets of behaviour, including collective behaviour—the movements and interactions among animals that underlie their complex social lives. What is needed to address this? First, a place with lots of space. Second, state-of-the-art technology.
Both are available in an 18th-century barn at the Max Planck Institute of Animal Behavior in Möggingen near Konstanz and now in the Imaging Hangar, a hall the size of a gymnasium at the University of Konstanz. Both labs are used to closely examine the group behaviour of animals.
To do so in a multidimensional way, researchers from the Cluster of Excellence Centre for the Advanced Study of Collective Behaviour at the University of Konstanz and the Max Planck Institute of Animal Behavior have developed a tool called SMART-BARN.
SMART-BARN is an acronym for Scalable Multimodal Arena for Real-time Tracking Behaviour of Animals in large numbers.
“It is a new tool that allows studying complex behaviour traits of an individual or interactions between groups of animals like insects, birds, or mammals”, says Hemal Naik. Together with Máté Nagy, Co-Speaker of the Cluster, Iain Couzin, and colleagues developed SMART-BARN.
The team was very interdisciplinary: Biologists, physicists, engineers and computer scientists developed it together.
Máté Nagy explains the tool further: “We are using high throughput measurement techniques like optical and acoustic tracking, with which we can study the exact 3D position and posture of animals and calculate their field of view”.
Users of the new facility will have the flexibility to perform different experimental paradigms by leveraging the modular nature of the system.
Why scale matters
“SMART-BARN is designed to enhance the scale of typical indoor behavioural experiments in terms of experimental volume and measured behaviour traits and group sizes”,
Computer scientist Hemal Naik says and adds: “This means that users can measure previously unseen behaviour repertoire because animals have more space.” The facility can – depending on the size of the animals – host 100s of animals simultaneously and extend the possibility of experiments to novel species typically not studied in indoor environments.
“In fact, we have now scaled this to work with many thousands of animals”, adds Couzin, “We recently conducted a study in the Imaging Hangar where we tracked 10,000 plague locusts. This would have been impossible without our SMART-BARN technology.”
How SMART-BARN can be used
So far, SMART-BARN was used within different experimental use cases involving subjects as diverse as pigeons, starlings, moth, bats, and humans.
Naik is delighted because: “The facility is shaping important new interdisciplinary collaborations.”
He continues: “For example, SMART-BARN offers the ability to track 3D gaze and posture of birds in a group of ten or more while maintaining their identity. This technique is being used by researchers to explore the role of gaze in decision making.”
The same technique is used by computer scientists to design novel computer vision and AI based algorithms facilitating 3D tracking of animals without attaching any markers to them.
“Our method has resulted in an even larger system in the Imaging Hangar at the University of Konstanz to track swarms of robots or thousands of insects”, says Iain Couzin.
Máté Nagy says: “In a nutshell, the scope of its applications is only limited by our ability to come up with ideas of experimentation.”
The team imagines the facility to be a collaborative space where researchers from all over the globe can contribute to the exploration of behavioural questions. Therefore, the team invites researchers across the world to connect with them and plan experiments.
About this behavioral neuroscience research news
Author: Helena Dietz
Source: University of Konstanz
Contact: Helena Dietz – University of Konstanz
Image: The image is credited to Neuroscience News
Original Research: Open access.
“SMART-BARN: Scalable Multimodal Arena for Real-time Tracking Behavior of Animals in large Numbers” by Máté Nagy et al. Science Advances
Abstract
SMART-BARN: Scalable Multimodal Arena for Real-time Tracking Behavior of Animals in large Numbers
The SMART-BARN (scalable multimodal arena for real-time tracking behavior of animals in large numbers) achieves fast, robust acquisition of movement, behavior, communication, and interactions of animals in groups, within a large (14.7 meters by 6.6 meters by 3.8 meters), three-dimensional environment using multiple information channels.
Behavior is measured from a wide range of taxa (insects, birds, mammals, etc.) and body size (from moths to humans) simultaneously.
This system integrates multiple, concurrent measurement techniques including submillimeter precision and high-speed (300 hertz) motion capture, acoustic recording and localization, automated behavioral recognition (computer vision), and remote computer-controlled interactive units (e.g., automated feeders and animal-borne devices).
The data streams are available in real time allowing highly controlled and behavior-dependent closed-loop experiments, while producing comprehensive datasets for offline analysis.
The diverse capabilities of SMART-BARN are demonstrated through three challenging avian case studies, while highlighting its broad applicability to the fine-scale analysis of collective animal behavior across species.
Discussion about this post